Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Int J Food Microbiol ; 413: 110608, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308875

RESUMO

During thermal processing of braised sauce beef, the lipid content of circularly used sauce increased accordingly because of lipid migration from beef to sauce, which may impact the bacterial heat resistance in the products. This study aims to characterize the heat resistance of Clostridium sporogenes spores in braised sauce beef, and investigate the effects of oil on the spore surface characteristics and microstructure. The results indicated that the heat resistance of C. sporogenes spores in beef was significantly higher than that in sauce. Oil addition remarkably enhanced the spore heat resistance in sauce, with D95°C value three times more than that without oil added, and even higher than that in beef. The results of spore surface characteristics indicated that oil addition led to an increase of hydrophobicity and a decrease of zeta potential, which ultimately increased spore heat resistance. Microstructure analysis indicated that exosporium maintenance and cortex expansion induced by oil addition might contribute to the increase of spore heat resistance. This study has sufficiently verified the importance of oil content on the heat resistance of C. sporogenes spores, which should be taken into consideration when developing thermal processes for controlling the spores in food matrices.


Assuntos
Clostridium botulinum , Temperatura Alta , Animais , Bovinos , Microbiologia de Alimentos , Esporos Bacterianos , Clostridium , Lipídeos/farmacologia
2.
Food Funct ; 15(6): 2960-2973, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38407402

RESUMO

In this study, the antifatigue effect and mechanism of peanut sprouts were explored. BALB/c mice divided into three groups (control, dark and UV-C) were respectively supplemented with a normal diet, peanut sprouts (dark germination) added diet and stilbenes-enriched peanut sprouts (UV-C radiated germination) added diet. Results showed that swimming time and levels of blood glucose and antioxidant enzymes significantly increased, while contents of triglyceride and malondialdehyde notably decreased by peanut sprout supplementation. Besides, combined analysis of gut microbiota gene sequencing and targeted metabolomics of fecal metabolites revealed that peanut sprout supplementation up-regulated abundances and metabolic transformations of Catenibacillus, Odoribacter, Prevotellaceae-UCG-001 and Butyricicoccus while it down-regulated the abundance of Parabacteroides. Consequently, contents of sebacic acid, azelaic acid, suberic acid, heptanoic acid, pimelic acid, aminoadipic acid and mono-phenolics notably increased, which were markedly correlated with the antifatigue effect. Compared with the dark group, the swimming time, glutathione peroxidase activity, methylmalonylcarnitine content and abundances of Butyricicoccus, Catenibacillus and Lachnospiraceae NK4A136 were higher in the UV-C group, while opposite results were obtained for the levels of triglyceride, malondialdehyde, alpha-linolenic acid, gamma-linolenic acid, 10Z-heptadecenoic acid and palmitelaidic acid. Overall, peanut sprout supplementation could alleviate fatigue by modulating gut microbiota composition to promote fatty acid oxidation and lysine and stilbene catabolism to increase energy supply and regulate redox balance. UV-C-radiated peanut sprout supplementation could alleviate fatigue more effectively by up-regulating abundances of Butyricicoccus, Catenibacillus and Lachnospiraceae NK4A136 to promote long-chain fatty acid oxidation and catabolism of flavonoids and stilbenes efficiently.


Assuntos
Arachis , Microbiota , Animais , Camundongos , Multiômica , Clostridiales , Antioxidantes , Bacteroidetes , Malondialdeído , Triglicerídeos
3.
Plants (Basel) ; 13(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256795

RESUMO

In recent years, quinoa, as a nutritious and sustainable food material, has gained increasing popularity worldwide. To investigate the diversity of nutritional characteristics among different quinoa cultivars and explore their potential health benefits, metabolites of five quinoa cultivars (QL-1, SJ-1, SJ-2, KL-1 and KL-2) were compared by non-targeted metabolomics analysis based on UPLC-ZenoTOF-MS/MS in this study. A total of 248 metabolites across 13 categories were identified. Although the metabolite compositions were generally similar among the different quinoa cultivars, significant variations existed in their respective metabolite contents. Among the identified metabolites, amino acids/peptides, nucleosides, saponins and phenolic acids were the most abundant. Notably, SJ-1 exhibited the most distinct metabolite profile when compared to the other cultivars. Amino acids/peptides and nucleosides were found to be crucial factors contributing to the unique metabolite profile of SJ-1. Collectively, these aforementioned metabolites accounted for a substantial 60% of the total metabolites observed in each quinoa variety. Additionally, a correlation between the DPPH radical scavenging activity and the free phenolic content of quinoa was observed. Variations in phenolic content resulted in different antioxidant capacities among the quinoa cultivars, and SJ-1 exhibited lower phenolic levels and weaker antioxidant activity than the others. These results can provide important information for the development of quinoa resources.

4.
Food Res Int ; 175: 113760, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129002

RESUMO

The elderly people are prone to dysphagia due to weakened muscle strength. 3D food printing could modify the nutritional ratio and shape design to produce personalized nutritious food suitable for patients with dysphagia. White mushroom (Agaricus bisporus) is rich in a variety of active ingredients such as polysaccharides and polyphenols which are beneficial to human body, but its unique texture is not suitable for patients with dysphagia to chew. This study investigated the impact of different concentrations of soybean protein isolate (SPI, 3%, 5%, 7%, w/w) on 3D food printing of white mushroom powder and carried out the hierarchical representation of dysphagia diet within the framework of International Dysphagia Diet Standardization Initiative (IDDSI). The results illustrated that SPI addition to white mushroom gel reduced water mobility and promoted hydrogen bond formation, which significantly improved the mechanical strength and cohesiveness of printing inks, including yield stress, viscosity and hardness. IDDSI tests showed that the SPI addition of 3% and 5% helped the printing ink pass the spoon tilt test and the fork drip test, which could be classified as level 5 minced and moist food under the consideration of the fork pressure test. The 3D printing results indicated that the 7% SPI addition made the yield stress too high and was not easy for extrusion, resulting in the appearance defects of the printed sample. The addition of 3% SPI could make the printed sample have smooth surface and excellent self-supporting capacity. This work provides insights of white mushroom 3D printing technology as a more visually appealing dysphagia diet.


Assuntos
Transtornos de Deglutição , Proteínas de Soja , Idoso , Humanos , Pós , Dieta , Impressão Tridimensional , Excipientes
5.
Foods ; 12(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38137239

RESUMO

Gastrodin is one of the most important biologically active components of Gastrodia elata, which has many health benefits as a dietary and health food supplement. However, gastrodin measurement traditionally relies on laboratory and sophisticated instruments. This research was aimed at developing a rapid and non-destructive method based on Fourier transform near infrared (FT-NIR) to predict gastrodin content in fresh Gastrodia elata. Auto-ordered predictors selection (autoOPS) and successive projections algorithm (SPA) were applied to select the most informative variables related to gastrodin content. Based on that, partial least squares regression (PLSR) and multiple linear regression (MLR) models were compared. The autoOPS-SPA-MLR model showed the best prediction performances, with the determination coefficient of prediction (Rp2), ratio performance deviation (RPD) and range error ratio (RER) values of 0.9712, 5.83 and 27.65, respectively. Consequently, these results indicated that FT-NIRS technique combined with chemometrics could be an efficient tool to rapidly quantify gastrodin in Gastrodia elata and thus facilitate quality control of Gastrodia elata.

6.
Biosensors (Basel) ; 13(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37504154

RESUMO

In the original publication, there is a mistake in Figure 1: A duplication error between 1B and 1C, which occurred due to the similarity of the images of the three nanoparticles [...].

7.
Biosensors (Basel) ; 13(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37185550

RESUMO

In recent years, the high prevalence of Salmonella has emerged as a serious threat to public safety, prompting attempts to utilize accurate, rapid, and direct methods to ensure food safety. In this study, a multifunctional platform featuring dual-mode detection channels (colorimetric-fluorescence) combined with polymer chain reaction (PCR) was proposed for the sensitive and rapid detection of Salmonella. Additionally, the colorimetric measurements were achieved by color changes induced by methylene blue (MB) insertion into the double-stranded DNA, and the fluorescence measurements were performed by internal filter effect (IFE)-induced fluorescence quenching of upconversion nanoparticles (UCNPs) by MB. The results showed that the IFE and PCR amplification processes improved the sensitivity of the sensor towards Salmonella detection, with a limit of detection (LOD) of 21.8 CFU/mL. Moreover, this colorimetric-fluorescence dual-mode PCR biosensor was applied to determine Salmonella in food samples, such as chicken, egg, and fish, which produced satisfactory results. Overall, the present study results demonstrate the potential for combining PCR amplification with IFE to develop an efficient and reliable dual-mode analysis platform to safeguard food security.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Animais , Azul de Metileno , Salmonella , Reação em Cadeia da Polimerase/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
8.
J Sci Food Agric ; 103(11): 5332-5341, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37021785

RESUMO

BACKGROUND: Soy protein, peanut protein and wheat protein are commonly applied in plant-based products, but specific off-odor makes it difficult for consumers to accept, with 2-pentylfuran being one of the most representative flavors. In this study, 2-pentylfuran was employed as an example to explore the behavior and mechanism of the three proteins in absorbing off-odors. RESULTS: Gas chromatographic-mass spectrometric analysis indicated that different plant proteins were able to adsorb 2-pentylfuran. Circular dichroism proved 2-pentylfuran could drive the α-helix to ß-sheet transition of soy protein, which was not obvious in peanut protein or wheat protein. Ultraviolet spectroscopy tentatively determined that 2-pentylfuran caused changes in the tyrosine and tryptophan microenvironments of different plant proteins, which were further evidenced by synchronous fluorescence at fixed wavelength intervals of 15 nm and 60 nm. Static quenching of protein intrinsic fluorescence indicated that they formed a stable complex with 2-pentylfuran, except for wheat protein (dynamic quenching). CONCLUSION: The various conformations of the three proteins are the main reason for the difference in flavor retention of protein. Soy protein, peanut protein and wheat protein adsorbing 2-pentylfuran relies on non-covalent forces, especially hydrophobic interactions, maintained between the protein and 2-pentylfuran. © 2023 Society of Chemical Industry.


Assuntos
Proteínas de Plantas , Proteínas de Soja , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência/métodos , Dicroísmo Circular , Ligação Proteica , Termodinâmica , Sítios de Ligação
9.
Biology (Basel) ; 12(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106757

RESUMO

The Manila clam (Ruditapes philippinarum) is one of the most commercially important bivalves along the coast of China. With the continuous expansion of clam farming scale, it may lead to some serious problems, including loss of genetic variation, inbreeding depression, and reduced effective population size (Ne). In the present study, eleven microsatellite markers were used to investigate the genetic diversity and differentiation among 13 clam populations along the coast of China. As a result, 150 alleles were detected according to the genotyping results of eleven microsatellite loci. The observed heterozygosity (Ho) was estimated to be ranging from 0.437 to 0.678, while the expected heterozygosity (He) was calculated to be varying from 0.587 to 0.700. Fst values between populations ranged from 0.0046-0.1983. In particular, the Laizhou population had the highest genetic variability, which was significantly different from the others (all Fst values > 0.1). For all the clam populations, there was no significant linear regression between genetic and geographic distance, indicating that these populations do not follow a pattern of isolation by distance (IBD). Genetic structure was estimated according to NJ, principal coordinates (PCoA), and structure-based clustering. Estimates of effective population size range from dozens to thousands among different populations, based on linkage-disequilibrium and molecular coancestry methods. The results reveal the genetic diversity of clams and verify the hypothesis that clam population differentiation may be influenced by the mode of southern breeding and northern culture, providing guiding information for natural resource conservation and genetic breeding of clams.

10.
Aquat Toxicol ; 257: 106428, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36889128

RESUMO

Hypoxia has become one of the major environmental problems in the aquaculture industry. As one of the most commercially important bivalves, Manila clam Ruditapes philippinarum may be suffering substantial mortality attributable to hypoxia. The physiological and molecular responses to hypoxia stress in Manila clam were evaluated at two levels of low dissolved oxygen: 0.5 mg/L (DO 0.5 mg/L) and 2.0 mg/L (DO 2.0 mg/L). With the prolongation of hypoxia stress, the mortality rate was 100% at 156 h under DO 0.5 mg/L. In contrast, 50% of clams survived after 240 h of stress at DO 2.0 mg/L. After the hypoxia stress, some severe structural damages were observed in gill, axe foot, hepatopancreas tissues, such as cell rupture and mitochondrial vacuolization. For the hypoxia-stressed clams, the significant rise and decline of enzyme activity (LDH and T-AOC) was observed in gills, in contrast to the reduction of glycogen content. Furthermore, the expression levels of genes related to energy metabolism (SDH, PK, Na+/K+-ATPase, NF-κB and HIF-1α) was significantly affected by the hypoxia stress. It is therefore suggested that the short-term survival of clams under hypoxia may be dependent on stress protection by antioxidants, energy allocation, and tissue energy reserves (such as glycogen stores). Despite this, the prolongation of hypoxia stress at DO 2.0 mg/L may cause the irreversible damages of cellular structures in clam tissues, eventually leading to the death of clams. We therefore support the hypothesis that the extent of hypoxia impacts on marine bivalves may be underestimated in the coastal areas.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Bivalves/metabolismo , Metabolismo Energético , Alimentos Marinhos , Hipóxia
11.
Foods ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36900560

RESUMO

The effects of ascorbic acid treatment alone and in combination with degreasing or hydrothermal treatment on eating quality and in vitro digestibility of brown rice were explored for improving poor mouthfeel and low digestibility, and the improvement mechanism was investigated. The results indicated that the texture of cooked brown rice was significantly improved by degreasing combined with ascorbic acid hydrothermal treatment; the hardness and chewiness decreased to the level of polished rice; the stickiness increased three times of the cooked untreated brown rice; and the sensory score and in vitro digestibility were significantly enhanced from 68.20 and 61.37% to 83.70 and 79.53%, respectively. In addition, the relative crystallinity and water contact angle of treated brown rice were respectively reduced from 32.74% and 113.39° to 22.55% and 64.93°, and normal temperature water uptake significantly increased. Scanning electron microscope showed that the separation of starch granules occurred inside cooked brown rice grain obviously. The improvement of eating quality and in vitro digestibility of brown rice is conducive to enhancing the consumers acceptance and human health.

12.
Foods ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36765962

RESUMO

In this work, the potential of a hyperspectral imaging (HSI) system for the detection of black spot disease on winter jujubes infected by Alternaria alternata during postharvest storage was investigated. The HSI images were acquired using two systems in the visible and near-infrared (Vis-NIR, 400-1000 nm) and short-wave infrared (SWIR, 1000-2000 nm) spectral regions. Meanwhile, the change of physical (peel color, weight loss) and chemical parameters (soluble solids content, chlorophyll) and the microstructure of winter jujubes during the pathogenic process were measured. The results showed the spectral reflectance of jujubes in both the Vis-NIR and SWIR wavelength ranges presented an overall downtrend during the infection. Partial least squares discriminant models (PLS-DA) based on the HSI spectra in Vis-NIR and SWIR regions of jujubes both gave satisfactory discrimination accuracy for the disease detection, with classification rates of over 92.31% and 91.03%, respectively. Principal component analysis (PCA) was carried out on the HSI images of jujubes to visualize their infected areas during the pathogenic process. The first principal component of the HSI spectra in the Vis-NIR region could highlight the diseased areas of the infected jujubes. Consequently, Vis-NIR HSI and NIR HSI techniques had the potential to detect the black spot disease on winter jujubes during the postharvest storage, and the Vis-NIR HSI spectral information could visualize the diseased areas of jujubes during the pathogenic process.

13.
Food Chem ; 409: 135302, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36623358

RESUMO

Cell wall polysaccharides and physicochemical properties are the major quality characteristics of fruit, but they are significantly affected by the postharvest disease. In this study, the influence of Alternaria alternata-induced disease on the contents of cell wall polysaccharides and physicochemical properties in 'Korla' pear flesh during storage, as well as their relationships of the optical absorption (µa) and reduced scattering (µs') were explored. The infected pear had lower individual sugars, covalent-soluble pectin, cellulose and hemicellulose contents than the healthy ones. The successive decreases of µa and increases of µs' in pears were observed while the process of pathogen infection. Path-coefficient analysis indicated the ionic-soluble pectin was the main reason responsible for the change of µs' in infected pear at 675 nm and 980 nm. This study indicated the optical properties have the possibility to present the physicochemical characteristics and cell wall polysaccharides of pears during postharvest pathogen infection.


Assuntos
Pyrus , Pyrus/química , Polissacarídeos/química , Parede Celular/química , Pectinas/análise , Alternaria , Frutas/química
14.
Anal Chim Acta ; 1239: 340751, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628739

RESUMO

In this study, we reported a novel sensing platform based on fluorescence quenching composed of alendronic acid (ADA) coated upconversion nanoparticles (UCNPs) and Nile Blue (NB) combined with polymerase chain reaction (PCR) for rapid, sensitive, and specific detection of Escherichia coli (E. coli). As a fluorescence acceptor, NB has a broad absorption band and can quench upconversion fluorescence intensity at 544 nm and 658 nm based on IFE. PCR is a double-stranded DNA (dsDNA) amplification technique with high specificity. The NB-dsDNA complex can be formed by intercalation of NB between base pairs and groove of dsDNA, leading to upconversion fluorescence recovery. The ADA-coated UCNPs@NB sensing platform achieved to detect E. coli in 1.5 h, with a lower limit of detection (33 CFU mL-1). In addition, the sensitivity of the ADA@UCNPs-NB fluorescence sensor under different PCR cycle numbers was discussed. The results showed that the proposed sensor could effectively shorten the assay time (1.0 h) while maintaining excellent sensitivity. This study demonstrated a rapid and sensitive analytical method for detecting E. coli in chicken, providing a reference for constructing PCR fluorescence sensors.


Assuntos
Proteínas de Escherichia coli , Nanopartículas , Escherichia coli/genética , DNA/genética , Técnicas de Amplificação de Ácido Nucleico , Transferência Ressonante de Energia de Fluorescência/métodos , Fatores de Transcrição/genética , O(6)-Metilguanina-DNA Metiltransferase
15.
Food Chem ; 409: 135298, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36584526

RESUMO

In this work, a single integrating sphere system was applied to characterize the optical absorption (µa) and reduced scattering (µs') properties (550 - 1050 nm) in winter jujube flesh infected by Alternaria alternata during storage at 4 and 20 °C, respectively. Meanwhile, physical (L*, a*, weight loss) and biochemical characteristics (soluble solids content, titratable acids, chlorophyll, total phenolic, and ascorbic acid) of winter jujubes were measured. Among them, chlorophyll, weight loss and ascorbic acid were highly correlated with µa at 680 nm, 690 nm, while chlorophyll and a* had the best correlations with µs' at 700 - 920 nm. These optimal optical properties were proved efficiently contributed to the disease detection of winter jujubes after 12 days at 4 °C and 3 days at 20 °C during storage, with satisfactory discrimination accuracies (acc > 93.75 %). Consequently, optical properties in Vis-NIR region were available to detect the postharvest disease in winter jujubes.


Assuntos
Ziziphus , Ziziphus/química , Alternaria , Ácido Ascórbico , Clorofila
16.
J Sci Food Agric ; 103(8): 3907-3914, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36329649

RESUMO

BACKGROUND: The pasting properties of rice change markedly after aging, although the mechanism for this still remains unknown. Aged and fresh rice grains were ground and the flours were fractionated by particle size, and then the pasting properties, particle size distribution and microscopic morphology of the heated flour fractions were evaluated. RESULTS: Compared to the corresponding fresh flour fractions with the same particle size, a lower peak viscosity for those aged flour fractions from 80 µm to 450 µm and a higher peak viscosity for those aged flour fractions from 20 µm to 60 µm were observed. The amounts of smaller particles disaggregated from the aged flour fractions were significantly less and the separated entities were always larger than the corresponding fresh rice fractions. CONCLUSION: Disaggregation difficulty of starch granules was the reason for the changes in the pasting properties of rice after aging. This finding is helpful for understanding rice aging mechanisms and regulating eating quality of rice flour as an ingredient. © 2022 Society of Chemical Industry.


Assuntos
Oryza , Amido , Amido/química , Oryza/química , Viscosidade , Tamanho da Partícula , Temperatura Alta , Farinha/análise
17.
Sensors (Basel) ; 22(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365901

RESUMO

The growth models of total bacterial count in freshly squeezed strawberry juice were established by gas and taste sensors in this paper. By selecting the optimal sensors and fusing the response values, the Modified Gompertz, Logistic, Huang and Baranyi models were used to predict and simulate the growth of bacteria. The results showed that the R2 values for fitting the growth model of total bacterial count of the sensor S7 (an electronic nose sensor), of sweetness and of the principal components scores were 0.890-0.944, 0.861-0.885 and 0.954-0.964, respectively. The correlation coefficients, or R-values, between models fitted by the response values and total bacterial count ranged from 0.815 to 0.999. A single system of electronic nose (E-nose) or electronic tongue (E-tongue) sensors could be used to predict the total bacterial count in freshly squeezed strawberry juice during cold storage, while the higher rate was gained by the combination of these two systems. The fusion of E-nose and E-tongue had the best fitting-precision in predicting the total bacterial count in freshly squeezed strawberry juice during cold storage. This study proved that it was feasible to predict the growth of bacteria in freshly squeezed strawberry juice using E-nose and E-tongue sensors.


Assuntos
Nariz Eletrônico , Fragaria , Carga Bacteriana , Paladar , Língua
18.
Biosensors (Basel) ; 12(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290932

RESUMO

Shigella as a typical foodborne pathogen has strong survivability in the environment or food, leading to infectious diseases, yet its rapid detection technology with high selectivity and sensitivity remains challenging. In this study, complementary strand modified upconversion nanoparticles (UCNPs) can offer stable yellow-green fluorescence at 500-700 nm excited by a 980 nm laser. Importantly, Shigella aptamer modified gold nanoparticles (GNPs) formed by "Au-S" bond act as a fluorescence resonance energy transfer (FRET) donor and recognition element that can bind specifically to Shigella and significantly quench the fluorescence of complementary strand modified UCNPs. As a result, the fluorescence of our developed nanoprobe increased linearly with the increase in Shigella in a wide range from 1.2 × 102 to 1.2 × 108 CFU/mL and the detection limit was as low as 30 CFU/mL. Moreover, the fabricated upconversion fluorescence nanoprobe can achieve Shigella detection in contaminated chicken without enrichment in 1 h.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Nanopartículas , Shigella , Transferência Ressonante de Energia de Fluorescência , Ouro/química , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Nanopartículas/química , Limite de Detecção
19.
Anal Chim Acta ; 1221: 340085, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934342

RESUMO

In this work, a sandwich fluorometric method for dual-role recognition of L. monocytogenes was developed based on antibiotic-affinity strategy and fluorescence quenching effect for sensitive and rapid detection of L. monocytogenes in ham samples. Vancomycin (Van) was conjugated with magnetic nanoparticles (MNPs) to recognize and capture target bacteria. Biotinylated aptamers were used to bind specifically to L. monocytogenes through the cell wall. The two agents recognized target bacteria at different binding sites showing satisfied specificity. The upconversion fluorescence response signal could be enlarged by using the inner filter effect (IFE) between the colored products produced by enzyme-catalyzing substrate and upconversion nanoparticles (UCNPs). The change in fluorescence intensity could represent the concentration of target bacteria over 102-2 × 108 CFU mL-1. The developed sandwich fluorimetric method achieved a low detection limit (LOD) of 2.8 × 102 CFU mL-1. Overall, the constructed fluorometric sensor could provide a simple and reliable method for the detection of L. monocytogenes.


Assuntos
Aptâmeros de Nucleotídeos , Listeria monocytogenes , Antibacterianos , Aptâmeros de Nucleotídeos/química , Fluorescência , Vancomicina/química
20.
Genomics ; 114(4): 110409, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714827

RESUMO

Increasing evidences point to the potential role of microRNAs (miRNAs) in muscle growth and development in animals. However, knowledge on the identity of miRNAs and their targets in molluscs remains largely unknown. Scallops have one large adductor muscle, composed of fast (striated) and slow (smooth) muscle types, which display great differences in muscle fibers, meat quality, cell types and molecular components. In the present study, we performed a comprehensive investigation of miRNA transcriptomes in fast and slow adductor muscles of Yesso scallop Patinopecten yessoensis. As a result, 47 differentially expressed miRNAs representing ten miRNA families were identified between the striated and smooth adductor muscles. The KEGG enrichment analysis of their target genes were mainly associated with amino acid metabolism, energy metabolism and glycan biosynthesis. The target genes of miR-133 and miR-71 were validated by the dual-luciferase reporter assays and miRNA antagomir treatment in vivo. The identification and functional validation of these different miRNAs in scallops will greatly help our understanding of miRNA regulatory mechanism that achieves the unique muscle phenotypes in scallops. The present findings provide the direct evidences for muscle-specific miRNAs involved in muscle growth and differentiation in molluscs.


Assuntos
MicroRNAs , Pectinidae , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético , Pectinidae/genética , Pectinidae/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...